Matrix metalloproteinase-9 (MMP-9) has emerged as a physiological regulator of NMDA receptor (NMDAR)-dependent synaptic plasticity and memory. The pathways by which MMP-9 affects NMDAR signaling remain, however, elusive. Using single quantum dot tracking, we demonstrate that MMP-9 enzymatic activity increases NR1-NMDAR surface trafficking but has no influence on AMPA receptor mobility. The mechanism of MMP-9 action on NMDAR is not mediated by change in overall extracellular matrix structure nor by direct cleavage of NMDAR subunits, but rather through an integrin β1-dependent pathway. These findings describe a new target pathway for MMP-9 action in key physiological and pathological brain processes. Copyright © 2009 Society for Neuroscience.
CITATION STYLE
Michaluk, P., Mikasova, L., Groc, L., Frischknecht, R., Choquet, D., & Kaczmarek, L. (2009). Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin β1 signaling. Journal of Neuroscience, 29(18), 6007–6012. https://doi.org/10.1523/JNEUROSCI.5346-08.2009
Mendeley helps you to discover research relevant for your work.