The information and resources generated from diverse "omics" technologies provide opportunities for producing novel biological knowledge. It is essential to integrate various kinds of biological information and large-scale omics data sets through systematic analysis in order to describe and understand complex biological phenomena. For this purpose, we have developed a Web-based system, Plant MetGenMAP, which can comprehensively integrate and analyze large-scale gene expression and metabolite profile data sets along with diverse biological information. Using this system, significantly altered biochemical pathways and biological processes under given conditions can be retrieved rapidly and efficiently, and transcriptional events and/or metabolic changes in a pathway can be easily visualized. In addition, the system provides a unique function that can identify candidate promoter motifs associated with the regulation of specific biochemical pathways. We demonstrate the functions and application of the system using data sets from Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum), respectively. The results obtained by Plant MetGenMAP can aid in a better understanding of the mechanisms that underlie interesting biological phenomena and provide novel insights into the biochemical changes associated with them at the gene and metabolite levels. Plant MetGenMAP is freely available at http://bioinfo.bti.cornell.edu/tool/MetGenMAP. © 2009 American Society of Plant Biologists.
CITATION STYLE
Joung, J. G., Corbett, A. M., Fellman, S. M., Tieman, D. M., Klee, H. J., Giovannoni, J. J., & Fei, Z. (2009). Plant MetGenMAP: An integrative analysis system for plant systems biology. Plant Physiology, 151(4), 1758–1768. https://doi.org/10.1104/pp.109.145169
Mendeley helps you to discover research relevant for your work.