In this paper, we present WACO, a novel method of co-optimizing the format and the schedule of a given sparsity pattern in a sparse tensor program. A core challenge in this paper is the design of a lightweight cost model that accurately predicts the runtime of a sparse tensor program by considering the sparsity pattern, the format, and the schedule. The key idea in addressing this is exploiting a sparse convolutional network to learn meaningful features of the sparsity pattern and embedding a coupled behavior between the format and the schedule using a specially designed schedule template. In addition, within the enormous search space of co-optimization, our novel search strategy, an approximate nearest neighbor search, efficiently and accurately retrieves the best format and schedule for a given sparsity pattern. We evaluated WACO for four different algorithms (SpMV, SpMM, SDDMM, and MTTKRP) on a CPU using 726 different sparsity patterns. Our experimental results showed that WACO outperformed four state-of-the-art baselines, Intel MKL, BestFormat, TACO with a default schedule, and ASpT. Compared to the best of four baselines, WACO achieved 1.43×, 1.18×, 1.14×, and 1.27× average speedups on SpMV, SpMM, SDDMM, and MTTKRP, respectively.
CITATION STYLE
Won, J., Mendis, C., Emer, J. S., & Amarasinghe, S. (2023). WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program. In International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS (Vol. 2, pp. 920–934). Association for Computing Machinery. https://doi.org/10.1145/3575693.3575742
Mendeley helps you to discover research relevant for your work.