Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae

21Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The development of yeast that converts raw corn or cassava starch to ethanol without adding the exogenous α-amylase and/or glucoamylase would reduce the overall ethanol production cost. In this study, two copies of codon-optimized Saccharomycopsis fibuligera glucoamylase genes were integrated into the genome of the industrial Saccharomyces cerevisiae strain CCTCC M94055, and the resulting strain CIBTS1522 showed comparable basic growth characters with the parental strain. We systemically evaluated the fermentation performance of the CIBTS1522 strain using the raw corn or cassava starch at small and commercial-scale, and observed that a reduction of at least 40% of the dose of glucoamylase was possible when using the CIBTS1522 yeast under real ethanol production condition. Next, we measured the effect of the nitrogen source, the phosphorous source, metal ions, and industrial microbial enzymes on the strain’s cell wet weight and ethanol content, the nitrogen source and acid protease showed a positive effect on these parameters. Finally, orthogonal tests for some other factors including urea, acid protease, inoculum size, and glucoamylase addition were conducted to further optimize the ethanol production. Taken together, the CIBTS1522 strain was identified as an ideal candidate for the bioethanol industry and a better fermentation performance could be achieved by modifying the industrial culture media and condition. [Figure not available: see fulltext.]

Cite

CITATION STYLE

APA

Wang, X., Liao, B., Li, Z., Liu, G., Diao, L., Qian, F., … Yang, S. (2021). Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00375-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free