Improving the performance of dictionary-based approaches in protein name recognition

Citations of this article
Mendeley users who have this article in their library.


Dictionary-based protein name recognition is often a first step in extracting information from biomedical documents because it can provide ID information on recognized terms. However, dictionary-based approaches present two fundamental difficulties: (1) false recognition mainly caused by short names; (2) low recall due to spelling variations. In this paper, we tackle the former problem using machine learning to filter out false positives and present two alternative methods for alleviating the latter problem of spelling variations. The first is achieved by using approximate string searching, and the second by expanding the dictionary with a probabilistic variant generator, which we propose in this paper. Experimental results using the GENIA corpus revealed that filtering using a naive Bayes classifier greatly improved precision with only a slight loss of recall, resulting in 10.8% improvement in F-measure, and dictionary expansion with the variant generator gave further 1.6% improvement and achieved an F-measure of 66.6%. © 2004 Elsevier Inc. All rights reserved.




Tsuruoka, Y., & Tsujii, J. (2004). Improving the performance of dictionary-based approaches in protein name recognition. Journal of Biomedical Informatics, 37(6), 461–470.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free