A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling

15Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Insect pathogens have adopted an array of mechanisms to subvert the immune pathways of their respective hosts. Suppression may occur directly at the level of host–pathogen interactions, for instance phagocytic capacity or phenoloxidase activation, or at the upstream signaling pathways that regulate these immune effectors. Insect pathogens of the family Baculoviridae, for example, are known to produce a UDP-glycosyltransferase (UGT) that negatively regulates ecdysone signaling. Normally, ecdysone positively regulates both molting and antimicrobial peptide production, so the inactivation of ecdysone by glycosylation results in a failure of host larvae to molt, and probably a reduced antimicrobial response. Here, we examine a putative ecdysteroid glycosyltransferase, Hba_07292 (Hb-ugt-1), which was previously identified in the hemolymph-activated transcriptome of the entomopathogenic nematode Heterorhabditis bacteriophora. Injection of recombinant Hb-ugt-1 (rHb-ugt-1) into Drosophila melanogaster flies resulted in diminished upregulation of antimicrobial peptides associated with both the Toll and Immune deficiency pathways. Ecdysone was implicated in this suppression by a reduction in Broad Complex expression and reduced pupation rates in r Hb-ugt-1-injected larvae. In addition to the finding that H. bacteriophora excreted-secreted products contain glycosyltransferase activity, these results demonstrate that Hb-ugt-1 is an immunosuppressive factor and that its activity likely involves the inactivation of ecdysone.

Cite

CITATION STYLE

APA

Kenney, E., Yaparla, A., Hawdon, J. M., O’Halloran, D. M., Grayfer, L., & Eleftherianos, I. (2020). A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69306-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free