A simple moist model for the large-scale tropical atmospheric circulation is constructed by combining the simple models of Gill and Neelin and Held. The model describes the first baroclinic mode of the moist troposphere with variable "gross moist stability in response to given thermodynamic forcing from surface evaporation and atmospheric cloud radiative forcing (CRF), which is a measure of the radiative effects of clouds in the atmospheric radiative heating. When the present model is forced solely by the observed atmospheric CRF, quantitatively reasonable Hadley and Walker circulations are obtained, such as the trades, the ascending branches in the intertropical convergence zone (ITCZ) and the South Pacific Convergence Zone (SPCZ), as well as the descending branches in the cold tongue and subtropics. However, when the model is forced only by the observed surface evaporation, the Walker circulation totally disappears, and the Hadley circulation reverses. These results indicate that, in the context of a moist dynamic model, the spatial variations of atmospheric CRF are more important in terms of driving and maintaining the Hadley and Walker circulations than the spatial variation of surface evaporation.
CITATION STYLE
Tian, B., & Ramanathan, V. (2003). A simple moist tropical atmosphere model: The role of cloud radiative forcing. Journal of Climate, 16(12), 2086–2092. https://doi.org/10.1175/1520-0442(2003)016<2086:ASMTAM>2.0.CO;2
Mendeley helps you to discover research relevant for your work.