Battery energy storage systems (BESS) can alleviate the unstable effects of intermittent renewable energy systems, such as solar and wind power systems. In addition, a BESS can level the load of the existing utility grid. The penetration rate of this type of system is expected to increase in the future power grid, i.e., the microgrid. In this paper, a modeling technique is proposed that allows users to customize the photovoltaic (PV) battery hybrid systems. A dynamic power system computer-aided design/electromagnetic transients including DC system (PSCAD/EMTDC) model of a PV battery hybrid system is presented in this paper. Dynamic modeling of PV arrays, BESS, maximum power point tracking (MPPT) algorithms, and bidirectional converters are provided as well. The PV model, battery model, and MPPT control model are designed using a user-defined model (UDM) for custom electromagnetic transient simulation. A control method for stabilizing the output of the PV battery hybrid system is proposed. Finally, a PSCAD/EMTDC simulation is conducted to verify the effectiveness of the operating algorithm.
CITATION STYLE
Go, S. I., & Choi, J. H. (2020). Design and dynamic modelling of PV-battery hybrid systems for custom electromagnetic transient simulation. Electronics (Switzerland), 9(10), 1–24. https://doi.org/10.3390/electronics9101651
Mendeley helps you to discover research relevant for your work.