V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells

  • Corritore E
  • Lee Y
  • Pasquale V
  • et al.
13Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

β-Cell replacement therapy represents the most promising approach to restore β-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of β-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce β-cell differentiation of HDDCs, which acquired a broad repertoire of mature β-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived β cells (called β-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of β-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with potential to reverse diabetes.

Cite

CITATION STYLE

APA

Corritore, E., Lee, Y.-S., Pasquale, V., Liberati, D., Hsu, M.-J., Lombard, C. A., … Lysy, P. A. (2016). V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Translational Medicine, 5(11), 1525–1537. https://doi.org/10.5966/sctm.2015-0318

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free