Development of highly durable sliding triboelectric nanogenerator using diamond-like carbon films

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Climate change is affecting every being on the planet. The time has arrived to give a big push for harvesting renewable energy sources, thus reducing the dependencies on fossil fuels and chemical batteries. This inspired Nanotechnologists to explore energy harvesting techniques from the environment. Triboelectric nanogenerator (TENG) is one such emerging, promising, and a reliable technology to extract micropower from the abundantly available natural mechanical energy. In this study, we have addressed the durability issues of TENG using Diamond-like Carbon (DLC) films as a triboelectric surface. Our findings indicate a high potential for DLC films for TENG applications attributing to its outstanding tribological, mechanical and insulating properties. Hydrogenated DLC (H-DLC) film, Fluorinated DLC (F-DLC) film, and PTFE were used as dielectric surfaces on a rotary based sliding-TENG. The output performance of each pair differed with the sliding frequency where H-DLC/F-DLC pair produced the maximum output at a moderate frequency of 4 Hz. As the frequency was raised, H-DLC/PTFE pair exhibited the highest output at 10 Hz, equal to that of the Al/PTFE pair. The durability evaluation of DLC-TENG showed very promising outcomes producing stable output current for 2 h. This study is expected to encourage the development of DLC-based sliding-TENGs, with enhanced durability and output efficiency.

Cite

CITATION STYLE

APA

Ramaswamy, S. H., Kondo, R., Chen, W., Fukushima, I., & Choi, J. (2020). Development of highly durable sliding triboelectric nanogenerator using diamond-like carbon films. Tribology Online, 15(2), 89–97. https://doi.org/10.2474/TROL.15.89

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free