A novel Gram-stain-negative strain, designated ZYY5T, was isolated from rice roots. Results of 16S rRNA gene analysis indi-cated that strain ZYY5T was a member of the genus Dickeya, with a highest similarity to Dickeya zeae DSM 18068T (98.5%). The major fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Multi-locus sequence analysis using five concatenated genes (16S rRNA, atpD, infB, recA and gyrB) and phylogenomic analysis based on 2940 core gene sequences showed that strain ZYY5T formed a robust cluster with strains EC1, ZJU1202, DZ2Q, NCPPB 3531 and CSL RW192, while separated from the other strains of D. zeae. The orthologous average nucleotide identity (ANI) and digital DNA–DNAhybridization (dDDH) values among these six strains ranged from 96.8–99.9% and 73.7–99.8%, which supported that they were belonged to the same species. However, strain ZYY5T shared 58.4 of dDDH and 94.5% of ANI values with type strain D. zeae DSM 18068T, which were lower than the proposed species boundary cut-off for dDDH and ANI. The genomic analysis revealed that strain ZYY5T contained virulence-associated genes, which is same as the phylogenetic-related strains of the genus Dickeya. Based on the results of the polyphasic approaches, we propose that strain ZYY5T represents a novel species in the genus Dickeya, for which the name Dickeya oryzae sp. nov. (=JCM 33020T=ACCC 61554T) is proposed. Strains EC1, ZJU1202, DZ2Q, NCPPB 3531 and CSL RW192 should also be classified in the same genomospecies of D. oryzae same as ZYY5T.
CITATION STYLE
Wang, X., He, S. W., Guo, H. B., Han, J. G., Thin, K. K., Gao, J. S., … Zhang, X. X. (2020). Dickeya oryzae sp. Nov., isolated from the roots of rice. International Journal of Systematic and Evolutionary Microbiology, 70(7), 4171–4178. https://doi.org/10.1099/ijsem.0.004265
Mendeley helps you to discover research relevant for your work.