Impacts on noise analyses of GNSS position time series caused by seasonal signal, weight matrix, offset, and helmert transformation parameters

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The noise characteristics of the Global Navigation Satellite System (GNSS) position time series can be biased by many factors, which in turn affect the estimates of parameters in the deterministic model using a least squares method. The authors assess the effects of seasonal signals, weight matrix, intermittent offsets, and Helmert transformation parameters on the noise analyses. Different solutions are obtained using the simulated and real position time series of 647 global stations and power law noise derived from the residuals of stacking solutions are compared. Since the true noise in the position time series is not available except for the simulated data, the authors paid most attention to the noise difference caused by the variable factors. First, parameterization of seasonal signals in the time series can reduce the colored noise and cause the spectral indexes to be closer to zero (much "whiter"). Meanwhile, the additional offset parameters can also change the colored noise to be much "whiter" and more offsets parameters in the deterministic model leading to spectral indexes closer to zero. Second, the weight matrices derived from the covariance information can induce more colored noise than the unit weight matrix for both real and simulated data, and larger biases of annual amplitude of simulated data are attributed to the covariance information. Third, the Helmert transformation parameters (three translation, three rotation, and one scale) considered in the model show the largest impacts on the power law noise (medians of 0.4 mm-k/4 and 0.06 for the amplitude and spectral index, respectively). Finally, the transformation parameters and full-weight matrix used together in the stacking model can induce different patterns for the horizontal and vertical components, respectively, which are related to different dominant factors.

Cite

CITATION STYLE

APA

Chen, G., Zhao, Q., Wei, N., & Liu, J. (2018). Impacts on noise analyses of GNSS position time series caused by seasonal signal, weight matrix, offset, and helmert transformation parameters. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101584

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free