Organic radicals are an emerging class of luminophores possessing multiplet spin states and potentially showing spin-luminescence correlated properties. We investigated the mechanism of recently reported magnetic field sensitivity in the emission of a photostable luminescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) doped into hostαH-PyBTM molecular crystals. The magnetic field (0-14 T), temperature (4.2-20 K), and the doping concentration (0.1, 4, 10, and 22 wt%) dependence on the time-resolved emission were examined by measuring emission decays of the monomer and excimer. Quantum mechanical simulations on the decay curves disclosed the role of the magnetic field; it dominantly affects the spin sublevel population of radical dimers in the ground states. This situation is distinctly different from that in conventional closed-shell luminophores, where the magnetic field modulates their excited-state spin multiplicity. Namely, the spin degree of freedom of ground-state open-shell molecules is a new key for achieving magnetic-field-controlled molecular photofunctions.
CITATION STYLE
Kimura, S., Kimura, S., Kato, K., Teki, Y., Nishihara, H., & Kusamoto, T. (2021). A ground-state-dominated magnetic field effect on the luminescence of stable organic radicals. Chemical Science, 12(6), 2025–2029. https://doi.org/10.1039/d0sc05965j
Mendeley helps you to discover research relevant for your work.