A Lagrangian perspective has yielded many new insights in our quest to reveal the intricacies of turbulent flows. Much of this progress has been possible by following the trajectories of idealised, inertialess objects (tracers) traversing through the flow. Their spins and tumbles provide a glimpse into the underlying local velocity gradients of the turbulent field. While it is known that the spinning and tumbling rates of anisotropic particles are modified in turbulence - compared with those in a random flow field - a quantitative explanation for this has remained elusive. Now, Pujara et al. (J. Fluid Mech., vol. 922, 2021, R6) have made an attempt to predict the split between spinning and tumbling rates by accessing the particle's alignment with the local vorticity. Their analysis of filtered turbulent fields reveals a Lagrangian scale invariance, whereby key quantities relating to the particle's rotational statistics are preserved from the dissipative to the integral scale.
CITATION STYLE
Mathai, V. (2021). Scale-invariant spins and tumbles in turbulence. Journal of Fluid Mechanics, 926. https://doi.org/10.1017/jfm.2021.694
Mendeley helps you to discover research relevant for your work.