Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
CITATION STYLE
Nkosi, N. C., Basson, A. K., Ntombela, Z. G., Dlamini, N. G., & Pullabhotla, R. V. S. R. (2024, May 1). Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/bioengineering11050492
Mendeley helps you to discover research relevant for your work.