On the competitive ratio of the work function algorithm for the k -server problem

Citations of this article
Mendeley users who have this article in their library.


The k-server problem is one of the most fundamental online problems. The problem is to schedule k mobile servers to visit a sequence of points in a metric space with minimum total mileage. The k-server conjecture of Manasse, McGeogh, and Sleator states that there exists a k-competitive online algorithm. The conjecture has been open for over 15 years. The top candidate online algorithm for settling this conjecture is the work function algorithm (WFA) which was shown to have competitive ratio at most 2k-1. In this paper, we lend support to the conjecture that WFA is in fact k-competitive by proving that it achieves this ratio in several special metric spaces: the line, the star, and all metric spaces with k+2 points. © 2004 Elsevier B.V. All rights reserved.




Bartal, Y., & Koutsoupias, E. (2004). On the competitive ratio of the work function algorithm for the k -server problem. Theoretical Computer Science, 324(2-3 SPEC. ISS.), 337–345. https://doi.org/10.1016/j.tcs.2004.06.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free