We present dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions (SEDs) suggest two-ring disk architectures that mirror that of the asteroid-Kuiper Belt geometry of our own solar system. The Herschel observations at 100 μm spatially resolve the cold/outer-dust component for each star-disk system for the first time, finding evidence of planetesimals at >100 AU, i.e., a larger size than assumed from a simple blackbody fit to the SED. By breaking the degeneracy between the grain properties and the dust's radial location, the resolved images help constrain the dust grain-size distribution for each system. Three of the observed stars are A-type and one solar-type. On the basis of the combined Spitzer/IRS+MIPS (5-70 μm), the Herschel/PACS (100 and 160 μm) dataset, and under the assumption of idealized spherical grains, we find that the cold/outer belts of the three A-type stars are well fit with a mixed ice/rock composition rather than pure rocky grains, while the debris around the solar-type star is consistent with either rock or ice/rock grains. For the solar-type star HD 104860, we find that the minimum grain size is larger than expected from the threshold set by radiative blowout. The A-type stars HD 71722 and HD 159492, on the other hand, require minimum grain sizes that are smaller than blowout for inner- and outer-ring populations. In the absence of spectral features for ice, we find that the behavior of the continuum can help constrain the composition of the grains (of icy nature and not pure rocky material) given the Herschel-resolved locations of the cold/outer-dust belts. © 2013. The American Astronomical Society. All rights reserved.
CITATION STYLE
Morales, F. Y., Bryden, G., Werner, M. W., & Stapelfeldt, K. R. (2013). Herschel-resolved outer belts of two-belt debris disks around a-type stars: HD 70313, HD 71722, HD 159492, and F-TYPE: HD 104860. Astrophysical Journal, 776(2). https://doi.org/10.1088/0004-637X/776/2/111
Mendeley helps you to discover research relevant for your work.