D-lactic acid is a chiral three-carbon organic acid that can improve the thermostability of polylactic acid. Here, we systematically engineered Saccharomyces cerevisiae to produce D-lactic acid from glucose, a renewable carbon source, at near theoretical yield. Specifically, we screened D-lactate dehydrogenase (DLDH) variants from lactic acid bacteria in three different genera and identified the Leuconostoc pseudomesenteroides variant (LpDLDH) as having the highest activity in yeast. We then screened single-gene deletions to minimize the production of the side products ethanol and glycerol as well as prevent the conversion of D-lactic acid back to pyruvate. Based on the results of the DLDH screening and the single-gene deletions, we created a strain called ASc-d789M which overexpresses LpDLDH and contains deletions in glycerol pathway genes GPD1 and GPD2 and lactate dehydrogenase gene DLD1, as well as downregulation of ethanol pathway gene ADH1 using the L-methionine repressible promoter to minimize impact on growth. ASc-d789M produces D-lactic acid at a titer of 17.09 g/L in shake-flasks (yield of 0.89 g/g glucose consumed or 89% of the theoretical yield). Fed-batch fermentation resulted in D-lactic acid titer of 40.03 g/L (yield of 0.81 g/g glucose consumed). Altogether, our work represents progress towards efficient microbial production of D-lactic acid.
CITATION STYLE
Watcharawipas, A., Sae-Tang, K., Sansatchanon, K., Sudying, P., Boonchoo, K., Tanapongpipat, S., … Runguphan, W. (2021). Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Research, 21(4). https://doi.org/10.1093/femsyr/foab024
Mendeley helps you to discover research relevant for your work.