In this work, we report the fabrication of the new heterojunction of two 2D hybrid layered semiconductors—ZnO (stearic acid)/V2O5 (hexadecylamine)—and its behavior in the degradation of aqueous methylene blue under visible light irradiation. The optimal photocatalyst efficiency, reached at a ZnO (stearic acid)/V2O5 (hexadecylamine) ratio of 1:0.25, results in being six times higher than that of pristine zinc oxide. Reusability test shows that after three photocatalysis cycles, no significant changes in either the dye degradation efficiency loss, nor the photocatalyst structure, occur. Visible light photocatalytic performance observed indicates there is synergetic effect between both 2D nanocomposites used in the heterojunction. The visible light absorption enhancement promoted by the narrower bandgap V2O5 based components; an increased photo generated charge separation favored by extensive interface area; and abundance of hydrophobic sites for dye adsorption appear as probable causes of the improved photocatalytic efficiency in this hybrid semiconductors heterojunction. Estimated band-edge positions for both conduction and valence band of semiconductors, together with experiments using specific radical scavengers, allow a plausible photodegradation mechanism.
CITATION STYLE
Aliaga, J., Cifuentes, N., González, G., Sotomayor-Torres, C., & Benavente, E. (2018). Enhancement photocatalytic activity of the heterojunction of two-dimensional hybrid semiconductors ZnO/V2O5. Catalysts, 8(9). https://doi.org/10.3390/catal8090374
Mendeley helps you to discover research relevant for your work.