Passivity and practical work extraction using Gaussian operations

46Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Quantum states that can yield work in a cyclical Hamiltonian process form one of the primary resources in the context of quantum thermodynamics. Conversely, states whose average energy cannot be lowered by unitary transformations are called passive. However, while work may be extracted from non-passive states using arbitrary unitaries, the latter may be hard to realize in practice. It is therefore pertinent to consider the passivity of states under restricted classes of operations that can be feasibly implemented. Here, we ask how restrictive the class of Gaussian unitaries is for the task of work extraction. We investigate the notion of Gaussian passivity, that is, we present necessary and sufficient criteria identifying all states whose energy cannot be lowered by Gaussian unitaries. For all other states we give a prescription for the Gaussian operations that extract the maximal amount of energy. Finally, we show that the gap between passivity and Gaussian passivity is maximal, i.e., Gaussian-passive states may still have a maximal amount of energy that is extractable by arbitrary unitaries, even under entropy constraints.

Cite

CITATION STYLE

APA

Brown, E. G., Friis, N., & Huber, M. (2016). Passivity and practical work extraction using Gaussian operations. New Journal of Physics, 18(11). https://doi.org/10.1088/1367-2630/18/11/113028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free