Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors

24Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

Single-cell transcriptomes are established by transcription factors (TFs), which determine a cell’s gene-expression complement. Post-transcriptional regulation of single-cell transcriptomes, and the RNA binding proteins (RBPs) responsible, are more technically challenging to determine, and combinatorial TF-RBP coordination of single-cell transcriptomes remains unexplored. We used fluorescent reporters to visualize alternative splicing in single Caenorhabditis elegans neurons, identifying complex splicing patterns in the neuronal kinase sad-1. Most neurons express both isoforms, but the ALM mechanosensory neuron expresses only the exon-included isoform, while its developmental sister cell the BDU neuron expresses only the exon-skipped isoform. A cascade of three cell-specific TFs and two RBPs are combinatorially required for sad-1 exon inclusion. Mechanistically, TFs combinatorially ensure expression of RBPs, which interact with sad-1 pre-mRNA. Thus a combinatorial TF-RBP code controls single-neuron sad-1 splicing. Additionally, we find ‘phenotypic convergence,’ previously observed for TFs, also applies to RBPs: Different RBP combinations generate similar splicing outcomes in different neurons.

Cite

CITATION STYLE

APA

Thompson, M., Bixby, R., Dalton, R., Vandenburg, A., Calarco, J. A., & Norris, A. D. (2019). Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors. ELife, 8. https://doi.org/10.7554/eLife.46726

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free