A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.

Cite

CITATION STYLE

APA

Hapugoda, J. C., & Sooriyarachchi, M. R. (2017). A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka. In Journal of Physics: Conference Series (Vol. 890). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/890/1/012135

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free