Abstraction layers for scalable microfluidic biocomputers

3Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Microfluidic devices are emerging as an attractive technology for automatically orchestrating the reactions needed in a biological computer. Thousands of microfluidic primitives have already been integrated on a single chip, and recent trends indicate that the hardware complexity is increasing at rates comparable to Moore’s Law. As in the case of silicon, it will be critical to develop abstraction layers—such as programming languages and Instruction Set Architectures (ISAs)—that decouple software development from changes in the underlying device technology. Towards this end, this paper presents Bio- Stream, a portable language for describing biology protocols, and the Fluidic ISA, a stable interface for microfluidic chip designers. A novel algorithm translates microfluidic mixing operations from the BioStream layer to the Fluidic ISA. To demonstrate the benefits of these abstraction layers, we build two microfluidic chips that can both execute BioStream code despite significant differences at the device level. We consider this to be an important step towards building scalable biological computers.

Cite

CITATION STYLE

APA

Thies, W., Urbanski, J. P., Thorsen, T., & Amarasinghe, S. (2006). Abstraction layers for scalable microfluidic biocomputers. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4287 LNCS, pp. 308–323). https://doi.org/10.1007/11925903_24

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free