Turning an aptamer into a light-switch probe with a single bioconjugation

8Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We describe a method for transforming a structure-switching aptamer into a luminescent light-switch probe via a single conjugation. The methodology is demonstrated using a known aptamer for Hg2+ as a case study. This approach utilizes a lanthanide-based metallointercalator, Eu-DOTA-Phen, whose luminescence is quenched almost entirely and selectively by purines, but not at all by pyrimidines. This complex, therefore, does not luminesce while intercalated in dsDNA, but it is bright red when conjugated to a ssDNA that is terminated by several pyrimidines. In its design, the light-switch probe incorporates a structure-switching aptamer partially hybridized to its complementary strand. The lanthanide complex is conjugated to either strand via a stable amide bond. Binding of the analyte by the structure-switching aptamer releases the complementary strand. This release precludes intercalation of the intercalator in dsDNA, which switches on its luminescence. The resulting probe turns on 21-fold upon binding to its analyte. Moreover, the structure switching aptamer is highly selective, and the long luminescence lifetime of the probe readily enables time-gating experiments for removal of the background autofluorescence of the sample. (Figure Presented).

Cite

CITATION STYLE

APA

Wickramaratne, T. M., & Pierre, V. C. (2015). Turning an aptamer into a light-switch probe with a single bioconjugation. Bioconjugate Chemistry, 26(1), 63–70. https://doi.org/10.1021/bc5003899

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free