This paper presents the SWATCS65 ensemble classifier used to identify the sentiment of tweets. The classifier was trained and tested using data provided by Semeval-2015, Task 10, subtask B with the goal to label the sentiment of an entire tweet. The ensemble was constructed from 26 classifiers, each written by a group of one to three undergraduate students in the Fall 2014 offering of a natural language processing course at Swarthmore College. Each of the classifiers was designed independently, though much of the early structure was provided by in-class lab assignments. There was high variability in the final performance of each of these classifiers, which were combined using a weighted voting scheme with weights correlated with performance using 5-fold cross-validation on the provided training data. The system performed very well, achieving an F1 score of 61.89.
CITATION STYLE
Wicentowski, R. (2015). SWATCS65: Sentiment Classification Using an Ensemble of Class Projects. In SemEval 2015 - 9th International Workshop on Semantic Evaluation, co-located with the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2015 - Proceedings (pp. 631–635). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/s15-2105
Mendeley helps you to discover research relevant for your work.