For over 100 years, scientists have tried to understand the mechanisms that lead to the axonal growth seen during development or the lack thereof during regeneration failure after spinal cord injury (SCI). Deoxyribozyme technology as a potential therapeutic to treat SCIs or other insults to the brain, combined with a bioinformatics approach to comprehend the complex protein-protein interactions that occur after such trauma, is the focus of this review. The reader will be provided with information on the selection process of deoxyribozymes and their catalytic sequences, on the mechanism of target digestion, on modifications, on cellular uptake and on therapeutic applications and deoxyribozymes are compared with ribozymes, siRNAs and antisense technology. This gives the reader the necessary knowledge to decide which technology is adequate for the problem at hand and to design a relevant agent. Bioinformatics helps to identify not only key players in the complex processes that occur after SCI but also novel or less-well investigated molecules against which new knockdown agents can be generated. These two tools used synergistically should facilitate the pursuit of a treatment for insults to the central nervous system. © 2011 Springer-Verlag.
CITATION STYLE
Grimpe, B. (2012, July). Deoxyribozymes and bioinformatics: Complementary tools to investigate axon regeneration. Cell and Tissue Research. https://doi.org/10.1007/s00441-011-1291-6
Mendeley helps you to discover research relevant for your work.