The accuracy of computerized adaptive testing in heterogeneous populations: A mixture item-response theory analysis

2Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND: Computerized adaptive testing (CAT) utilizes latent variable measurement model parameters that are typically assumed to be equivalently applicable to all people. Biased latent variable scores may be obtained in samples that are heterogeneous with respect to a specified measurement model. We examined the implications of sample heterogeneity with respect to CAT-predicted patient-reported outcomes (PRO) scores for the measurement of pain. METHODS: A latent variable mixture modeling (LVMM) analysis was conducted using data collected from a heterogeneous sample of people in British Columbia, Canada, who were administered the 36 pain domain items of the CAT-5D-QOL. The fitted LVMM was then used to produce data for a simulation analysis. We evaluated bias by comparing the referent PRO scores of the LVMM with PRO scores predicted by a "conventional" CAT (ignoring heterogeneity) and a LVMM-based "mixture" CAT (accommodating heterogeneity). RESULTS: The LVMM analysis indicated support for three latent classes with class proportions of 0.25, 0.30 and 0.45, which suggests that the sample was heterogeneous. The simulation analyses revealed differences between the referent PRO scores and the PRO scores produced by the "conventional" CAT. The "mixture" CAT produced PRO scores that were nearly equivalent to the referent scores. CONCLUSION: Bias in PRO scores based on latent variable models may result when population heterogeneity is ignored. Improved accuracy could be obtained by using CATs that are parameterized using LVMM.

Cite

CITATION STYLE

APA

Sawatzky, R., Ratner, P. A., Kopec, J. A., Wu, A. D., & Zumbo, B. D. (2016). The accuracy of computerized adaptive testing in heterogeneous populations: A mixture item-response theory analysis. PLoS ONE, 11(3). https://doi.org/10.1371/journal.pone.0150563

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free