Large diameter, short monopiles are the preferred foundation type for offshore wind turbines. These piles demonstrate a rigid response with significant rotation of the pile base under ultimate lateral load. As traditional empirical p-y curves used in lateral loaded pile analysis have been derived from tests on small diameter onshore piles, there is some doubt about their applicability to rigid monopiles, particularly in view of the significant difference in the response of the pile base compared with a typical onshore pile. To address this issue, this paper reports on a unique series of field tests using instrumented driven pipe piles, complimented by numerical analysis, which was performed to examine explicitly the contribution of the pile base to the response under lateral load. The field tests, which included tests on pipe piles that had the sand plug removed to below pile tip level prior to testing, confirmed that the influence of the base on the lateral response for the tested 273- and 457-mm-diameter piles was negligible. Numerical analyses that were calibrated using the field test data showed that the contribution of the base to the lateral capacity of a monopile with a diameter as large as 10 m is negligible. Results also indicated that p-y curves are not affected by the length to diameter ratio and can be used to predict the response of monopiles in sand.
CITATION STYLE
Wang, H., Lehane, B. M., Bransby, M. F., Wang, L. Z., & Hong, Y. (2022). Field and numerical study of the lateral response of rigid piles in sand. Acta Geotechnica, 17(12), 5573–5584. https://doi.org/10.1007/s11440-022-01532-6
Mendeley helps you to discover research relevant for your work.