Antecedent soil water content and vapor pressure deficit interactively control water potential in Larrea tridentata

25Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Plant water potential Ψ is regulated by stomatal responses to atmospheric moisture demand D and soil water availability W, but the timescales of influence and interactions between these drivers of plant Ψ are poorly understood. Here, we quantify the effects of antecedent D and W on plant Ψ in the desert shrub Larrea tridentata. Repeated measurements of plant baseline water potential ΨB and diurnal water potential ΨD were analyzed in a Bayesian framework to evaluate the influence of antecedent D and W at daily and subdaily timescales. Both ΨB and ΨD exhibited negative, 2- to 4-d lagged responses to daily-scale D; conversely, plant ΨD responded almost instantaneously to subdaily D, though the direction of this response depended on antecedent moisture conditions. Plant ΨB and ΨD responded positively and immediately (no lag) to shallow W, which contrasts the negative, lagged (6–7 d) response to deep W. The changing sensitivity of ΨD to subdaily D highlights shifting modes of plant Ψ regulation: D effects on ΨD range from negative to neutral to positive depending on past conditions and time of day. Explicit consideration of antecedent conditions across multiple timescales can reveal important complexities in plant responses.

Cite

CITATION STYLE

APA

Guo, J. S., & Ogle, K. (2019). Antecedent soil water content and vapor pressure deficit interactively control water potential in Larrea tridentata. New Phytologist, 221(1), 218–232. https://doi.org/10.1111/nph.15374

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free