MedWriter: Knowledge-Aware Medical Text Generation

5Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

Abstract

To exploit the domain knowledge to guarantee the correctness of generated text has been a hot topic in recent years, especially for high professional domains such as medical. However, most of recent works only consider the information of unstructured text rather than structured information of the knowledge graph. In this paper, we focus on the medical topic-to-text generation task and adapt a knowledge-aware text generation model to the medical domain, named MedWriter, which not only introduces the specific knowledge from the external MKG but also is capable of learning graph-level representation. We conduct experiments on a medical literature dataset collected from medical journals, each of which has a set of topic words, an abstract of medical literature and a corresponding knowledge graph from CMeKG. Experimental results demonstrate incorporating knowledge graph into generation model can improve the quality of the generated text and has robust superiority over the competitor methods.

Cite

CITATION STYLE

APA

Pan, Y., Chen, Q., Peng, W., Wang, X., Hu, B., Liu, X., … Zhou, W. (2020). MedWriter: Knowledge-Aware Medical Text Generation. In COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference (pp. 2363–2368). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2020.coling-main.214

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free