This paper describes the synthesis of NIPU by using cardanol as starting material. A cardanol formaldehyde oligomer was first prepared through the reaction of cardanol and formaldehyde, catalyzed by citric acid. The resulting oligomer was then subjected to epoxidation with m-chloroperbenzoic acid to obtain an epoxide compound, which was subsequently used to fix carbon dioxide (CO2) and form a cyclic carbonate. Using this cyclic carbonate, along with an amine, cardanol-based isocyanate polyurethane (NIPU) was prepared. Different characterization methods, such as Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA), were used to confirm the synthesis of the four intermediate products and NIPU in the reaction process. This study highlights the promise of bio-based NIPU as a sustainable alternative in a number of applications while offering insightful information on the synthesis and characterization of the material.
CITATION STYLE
Li, Y., Zhang, B., Zhao, Y., Lu, S., Fan, D., Wang, S., … Li, S. (2023). Synthesis and Characterization of Cardanol-Based Non-Isocyanate Polyurethane. Polymers, 15(24). https://doi.org/10.3390/polym15244683
Mendeley helps you to discover research relevant for your work.