Adaptation to life in aeolian sand: How the sandfish lizard, Scincus scincus, prevents sand particles from entering its lungs

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The sandfish lizard, Scincus scincus (Squamata: Scincidae), spends nearly its whole life in aeolian sand and only comes to the surface for foraging, defecating and mating. It is not yet understood how the animal can respire without sand particles entering its respiratory organs when buried under thick layers of sand. In this work, we integrated biological studies, computational calculations and physical experiments to understand this phenomenon.We present a 3D model of the upper respiratory system based on a detailed histological analysis. A 3D-printed version of this model was used in combination with characteristic ventilation patterns for computational calculations and fluid mechanics experiments. By calculating the velocity field, we identified a sharp decrease in velocity in the anterior part of the nasal cavity where mucus and cilia are present. The experiments with the 3D-printed model validate the calculations: particles, if present, were found only in the same area as suggested by the calculations. We postulate that the sandfish has an aerodynamic filtering system; more specifically, that the characteristic morphology of the respiratory channel coupled with specific ventilation patterns prevent particles from entering the lungs. © 2016. Published by The Company of Biologists Ltd.

Cite

CITATION STYLE

APA

Stadler, A. T., Vihar, B., Günther, M., Huemer, M., Riedl, M., Shamiyeh, S., … Baumgartner, W. (2016). Adaptation to life in aeolian sand: How the sandfish lizard, Scincus scincus, prevents sand particles from entering its lungs. Journal of Experimental Biology, 219(22), 3597–3604. https://doi.org/10.1242/jeb.138107

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free