Negative animal health and performance outcomes are associated with disease incidences that can be labor-intensive, costly, and cumbersome for many farms. Amelioration of unfavorable outcomes through early detection and treatment of disease has emphasized the value of improving health monitoring. Although the value is recognized, detecting hyperketonemia (HYK) is still difficult for many farms to do practically and efficiently. Increasing data streams available to farms presents opportunities to use data to better monitor cow and herd health; however, challenges remain with regard to validating, integrating, and interpreting data. During the transition to lactation period, useful data are presented in the form of milk production and composition, milk Fourier-transform infrared (FTIR) wavelength absorbance, cow management records, and genomics, which have been employed to monitor postpartum onset of HYK. Attempts to predict postpartum HYK from test-day milk and performance variables incorporated into multiple linear regression models have demonstrated sufficient accuracy to monitor monthly herd prevalence; however, they lacked the sensitivity and specificity for individual cow diagnostics. Subsequent artificial neural network prediction models employing FTIR data and milk composition variables achieved 83 and 81% sensitivity and specificity for individual cow diagnostics. Although these results fail to reach the diagnostic goals of 90%, they are achieved without individual cow blood samples, which may justify acceptance of lower performance. The caveat is that these models depend on milk analysis, which is traditionally done every 4 weeks. This infrequent sampling allows for a single diagnostic sample for about half of the fresh cows. Benefits to farms are greatly improved if postpartum cows can be milk-tested weekly. Additionally, this allows for close monitoring of somatic cell count and may open the door for use of other herd health monitoring tools. Future improvements in these models may be achievable by maximizing sensitivity at the expense of specificity and may be most economical in disorders for which the cost of treatment is less than that of mistreating (e.g., HYK). Genomic predictions for HYK may be improved by incorporating genome-wide associated SNP and further utilized for precision management of HYK risk groups. Development and validation of HYK prediction models may provide producers with individual cow and herd-level management tools.
CITATION STYLE
Pralle, R. S., & White, H. M. (2020, April 1). Symposium review: Big data, big predictions: Utilizing milk Fourier-transform infrared and genomics to improve hyperketonemia management. Journal of Dairy Science. Elsevier Inc. https://doi.org/10.3168/jds.2019-17379
Mendeley helps you to discover research relevant for your work.