Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

26Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190[thinsp][deg]C with ultra-high energy density. A specific energy density of 350[thinsp]Wh[thinsp]kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280[thinsp][deg]C), is obtained for planar sodium-nickel chloride batteries operated at 190[thinsp][deg]C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

Cite

CITATION STYLE

APA

Li, G., Lu, X., Kim, J. Y., Meinhardt, K. D., Chang, H. J., Canfield, N. L., & Sprenkle, V. L. (2016). Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nature Communications, 7. https://doi.org/10.1038/ncomms10683

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free