Hepatitis B Virus Surface Antigen Selectively Inhibits TLR2 Ligand–Induced IL-12 Production in Monocytes/Macrophages by Interfering with JNK Activation

  • Wang S
  • Chen Z
  • Hu C
  • et al.
135Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

Abstract

It is widely accepted that chronic hepatitis B virus (HBV) infection is the result of an ineffective antiviral immune response against HBV infection. Our previous study found that the hepatitis B surface Ag (HBsAg) was related to decreased cytokine production induced by the TLR2 ligand (Pam3csk4) in PBMCs from chronic hepatitis B patients. In this study, we further explored the mechanism involved in the inhibitory effect of HBsAg on the TLR2 signaling pathway. The results showed that both Pam3csk4-triggered IL-12p40 mRNA expression and IL-12 production in PMA-differentiated THP-1 macrophage were inhibited by HBsAg in a dose-dependent manner, but the production of IL-1β, IL-6, IL-8, IL-10, and TNF-α was not influenced. The Pam3csk4-induced activation of NF-κB and MAPK signaling were further examined. The phosphorylation of JNK-1/2 and c-Jun was impaired in the presence of HBsAg, whereas the degradation of IκB-α, the nuclear translocation of p65, and the phosphorylation of p38 and ERK-1/2 were not affected. Moreover, the inhibition of JNK phosphorylation and IL-12 production in response to Pam3csk was observed in HBsAg-treated monocytes/macrophages (M/MΦs) from the healthy donors and the PBMCs and CD14-positive M/MΦs from chronic hepatitis B patients. Taken together, these results demonstrate that HBsAg selectively inhibits Pam3csk4- stimulated IL-12 production in M/MΦs by blocking the JNK–MAPK pathway and provide a mechanism by which HBV evades immunity and maintains its persistence.

Cite

CITATION STYLE

APA

Wang, S., Chen, Z., Hu, C., Qian, F., Cheng, Y., Wu, M., … Yuan, Z. (2013). Hepatitis B Virus Surface Antigen Selectively Inhibits TLR2 Ligand–Induced IL-12 Production in Monocytes/Macrophages by Interfering with JNK Activation. The Journal of Immunology, 190(10), 5142–5151. https://doi.org/10.4049/jimmunol.1201625

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free