Machine-learning prediction of BMI change among doctors and nurses in North China during the COVID-19 pandemic

2Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Objective: The COVID-19 pandemic has become a major public health concern over the past 3 years, leading to adverse effects on front-line healthcare workers. This study aimed to develop a Body Mass Index (BMI) change prediction model among doctors and nurses in North China during the COVID-19 pandemic, and further identified the predicting effects of lifestyles, sleep quality, work-related conditions, and personality traits on BMI change. Methods: The present study was a cross-sectional study conducted in North China, during May-August 2022. A total of 5,400 doctors and nurses were randomly recruited from 39 COVID-19 designated hospitals and 5,271 participants provided valid responses. Participants’ data related to social-demographics, dietary behavior, lifestyle, sleep, personality, and work-related conflicts were collected with questionnaires. Deep Neural Network (DNN) was applied to develop a BMI change prediction model among doctors and nurses during the COVID-19 pandemic. Results: Of participants, only 2,216 (42.0%) individuals kept a stable BMI. Results showed that personality traits, dietary behaviors, lifestyles, sleep quality, burnout, and work-related conditions had effects on the BMI change among doctors and nurses. The prediction model for BMI change was developed with a 33-26-20-1 network framework. The DNN model achieved high prediction efficacy, and values of R2, MAE, MSE, and RMSE for the model were 0.940, 0.027, 0.002, and 0.038, respectively. Among doctors and nurses, the top five predictors in the BMI change prediction model were unbalanced nutritional diet, poor sleep quality, work-family conflict, lack of exercise, and soft drinks consumption. Conclusion: During the COVID-19 pandemic, BMI change was highly prevalent among doctors and nurses in North China. Machine learning models can provide an automated identification mechanism for the prediction of BMI change. Personality traits, dietary behaviors, lifestyles, sleep quality, burnout, and work-related conditions have contributed to the BMI change prediction. Integrated treatment measures should be taken in the management of weight and BMI by policymakers, hospital administrators, and healthcare workers.

Cite

CITATION STYLE

APA

Wang, Q., Chu, H., Qu, P., Fang, H., Liang, D., Liu, S., … Liu, A. (2023). Machine-learning prediction of BMI change among doctors and nurses in North China during the COVID-19 pandemic. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1019827

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free