Identifying dominant industrial sectors in market states of the S&P 500 financial data

2Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding and forecasting changing market conditions in complex economic systems like the financial market is of great importance to various stakeholders such as financial institutions and regulatory agencies. Based on the finding that the dynamics of sector correlation matrices of the S&P 500 stock market can be described by a sequence of distinct states via a clustering algorithm, we try to identify the industrial sectors dominating the correlation structure of each state. For this purpose, we use a method from explainable artificial intelligence (XAI) on daily S&P 500 stock market data from 1992 to 2012 to assign relevance scores to every feature of each data point. To compare the significance of the features for the entire data set we develop an aggregation procedure and apply a Bayesian change point analysis to identify the most significant sector correlations. We show that the correlation matrix of each state is dominated only by a few sector correlations. Especially the energy and IT sector are identified as key factors in determining the state of the economy. Additionally we show that a reduced surrogate model, using only the eight sector correlations with the highest XAI-relevance, can replicate 90% of the cluster assignments. In general our findings imply an additional dimension reduction of the dynamics of the financial market.

Cite

CITATION STYLE

APA

Wand, T., Heßler, M., & Kamps, O. (2023). Identifying dominant industrial sectors in market states of the S&P 500 financial data. Journal of Statistical Mechanics: Theory and Experiment, 2023(4). https://doi.org/10.1088/1742-5468/accce0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free