3-Hydroxybutyrate oligomer hydrolase and 3-hydroxybutyrate dehydrogenase participate in intracellular polyhydroxybutyrate and polyhydroxyvalerate degradation in Paracoccus denitrificans

20Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Genes encoding 3-hydroxybutyrate oligomer hydrolase (PhaZc) and 3-hydroxybutyrate dehydrogenase (Hbd) were isolated from Paracoccus denitrificans. PhaZc and Hbd were overproduced as His-tagged proteins in Escherichia coli and purified by affinity and gel filtration chromatography. Purified His-tagged proteins had molecular masses of 31 kDa and 120 kDa (a tetramer of 29-kDa subunits). The His-tagged PhaZc hydrolyzed not only 3-hydroxybutyrate oligomers but also 3-hydroxyvalerate oligomers. The His-tagged Hbd catalyzed the dehydrogenation of 3-hydroxyvalerate as well as 3-hydroxybutyrate. When both enzymes were included in the same enzymatic reaction system with 3-hydroxyvalerate dimer, sequential reactions occurred, suggesting that PhaZc and Hbd play an important role in the intracellular degradation of poly(3-hydroxyvalerate). When the phaZc gene was disrupted in P. denitrificans by insertional inactivation, the mutant strain lost PhaZc activity. When the phaZc-disrupted P. denitrificans was complemented with phaZc, PhaZc activity was restored. These results suggest that P. denitrificans carries a single phaZc gene. Disruption of the phaZc gene in P. denitrificans affected the degradation rate of PHA. © 2014, American Society for Microbiology.

Cite

CITATION STYLE

APA

Lu, J., Takahashi, A., & Ueda, S. (2014). 3-Hydroxybutyrate oligomer hydrolase and 3-hydroxybutyrate dehydrogenase participate in intracellular polyhydroxybutyrate and polyhydroxyvalerate degradation in Paracoccus denitrificans. Applied and Environmental Microbiology, 80(3), 986–993. https://doi.org/10.1128/AEM.03396-13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free