Composition Characterization and Transformation Mechanism of Dissolved Organic Matters in a Full-Scale Membrane Bioreactor Treating Co-Digestion Wastewater of Food Waste and Sewage Sludge

1Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The membrane bioreactor (MBR) serves as the most widely used technology in anaerobic digestion wastewater treatment, but the composition and transformation of the dissolved organic matters (DOMs) are vague. This study focused on the composition characterization and transformation mechanism of DOMs in real co-digestion wastewater of food waste and sewage sludge from a full-scale MBR via molecular weight cut-off, 3D-EEM, FT-IR, and SPME-GC/MS. The results indicated that the co-digestion wastewater mainly comprised organics with molecular weight (MW) lower than 1 kDa and dominated by tryptophane-protein-like substances. The hydrolytic/acidogenic process improved the biodegradability with the conversion of high-MW organics into low-MW organics, while the two-stage A/O process possessed the highest contribution to the organic removal with the consumption of most DOMs. However, the deficient removal of refractory organics (MW < 5 kDa) in the ultrafiltration unit led to the residual DOMs in the effluent. The potential functional bacteria in the biological processes have also been identified and were principally affiliated with Proteobacteria and Firmicutes. These findings could help to advance the understanding of the co-digestion wastewater and provide fundamental information for the optimization and development of MBR in anaerobic digestion wastewater treatment.

Cite

CITATION STYLE

APA

Zhou, Y., Shi, S., Zhou, J., He, L., He, X., Lu, Y., … Zhou, J. (2022). Composition Characterization and Transformation Mechanism of Dissolved Organic Matters in a Full-Scale Membrane Bioreactor Treating Co-Digestion Wastewater of Food Waste and Sewage Sludge. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116556

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free