Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft

  • Scolini C
  • Winslow R
  • Lugaz N
  • et al.
17Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this Letter, we perform numerical simulations of CMEs interacting with different solar wind streams using the linear force-free spheromak CME model incorporated into the EUropean Heliospheric FORecasting Information Asset model. The novelty of our approach lies in the investigation of the evolution of CME complexity using a swarm of radially aligned, simulated spacecraft. Our scope is to determine under which conditions, and to what extent, CMEs exhibit variations of their magnetic structure and complexity during propagation, as measured by spacecraft that are radially aligned. Results indicate that the interaction with large-scale solar wind structures, and particularly with stream interaction regions, doubles the probability to detect an increase of the CME magnetic complexity between two spacecraft in radial alignment, compared to cases without such interactions. This work represents the first attempt to quantify the probability of detecting complexity changes in CME magnetic structures by spacecraft in radial alignment using numerical simulations, and it provides support to the interpretation of multi-point CME observations involving past, current (such as Parker Solar Probe and Solar Orbiter), and future missions.

Cite

CITATION STYLE

APA

Scolini, C., Winslow, R. M., Lugaz, N., & Poedts, S. (2021). Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft. The Astrophysical Journal Letters, 916(2), L15. https://doi.org/10.3847/2041-8213/ac0d58

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free