Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species

5Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

© 2017 Torroba-Balmori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spat ial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.

Cite

CITATION STYLE

APA

Torroba-Balmori, P., Budde, K. B., Heer, K., González-Martínez, S. C., Olsson, S., Scotti-Saintagne, C., … Heuertz, M. (2017). Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0182515

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free