Anomalous diffusion of water in biological tissues

Citations of this article
Mendeley users who have this article in their library.


This article deals with the characterization of biological tissues and their pathological alterations. For this purpose, diffusion is measured by NMR in the fringe field of a large superconductor with a field gradient of 50 T/m, which is rather homogenous and stable. It is due to the unprecedented properties of the gradient that we are able not only to determine the usual diffusion coefficient, but also to observe the pronounced Non-Debye feature of the relaxation function due to cellular structure. The dynamics of the probability density follow a stretched exponential or Kohlrausch-Williams- Watts function. In the long time limit the Fourier transform of the probability density follows a long-tail Levy function, whose asymptotic is related to the fractal dimension of the underlying cellular structure. Some of the properties of Levy walk statistics are discussed and its potential importance in understanding certain biophysical phenomena like diffusion processes in biological tissues are pointed out. We present and discuss for the first time NMR data giving evidence for Levy processes that capture the essential features of the observed power law (scaling) dynamics of water diffusion in fresh tissue specimens: carcinomas, fibrous mastopathies, adipose and liver tissues.




Köpf, M., Corinth, C., Haferkamp, O., & Nonnenmacher, T. F. (1996). Anomalous diffusion of water in biological tissues. Biophysical Journal, 70(6), 2950–2958.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free