Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations

171Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this article; one is He's variational iteration method (VIM) and the other is the homotopy-perturbation method (HPM). The VIM is to construct correction functionals using general Lagrange multipliers identified optimally via the variational theory, and the initial approximations can be freely chosen with unknown constants. The HPM deforms a difficult problem into a simple problem which can be easily solved. Nonlinear convective-radiative cooling equation, nonlinear heat equation (porous media equation) and nonlinear heat equation with cubic nonlinearity are used as examples to illustrate the simple solution procedures. Comparison of the applied methods with exact solutions reveals that both methods are tremendously effective. © 2006 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Ganji, D. D., & Sadighi, A. (2007). Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. Journal of Computational and Applied Mathematics, 207(1), 24–34. https://doi.org/10.1016/j.cam.2006.07.030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free