Association of Insulin Resistance, Arterial Stiffness and Telomere Length in Adults Free of Cardiovascular Diseases.

  • I. S
  • O. T
  • S. B
  • et al.
Citations of this article
Mendeley users who have this article in their library.
Get full text


Background: Chronic inflammation and oxidative stress might be considered the key mechanisms of aging. Insulin resistance (IR) is a phenomenon related to inflammatory and oxidative stress. We tested the hypothesis that IR may be associated with cellular senescence, as measured by leukocyte telomere length (LTL), and arterial stiffness (core feature of arterial aging), as measured by carotid-femoral pulse wave velocity (c-f PWV). Methods The study group included 303 subjects, mean age 51.8 +/-13.3 years, free of known cardiovascular diseases and regular drug consumption. For each patient, blood pressure was measured, blood samples were available for biochemical parameters, and LTL was analyzed by real time q PCR. C-f PWV was measured with the help of SphygmoCor. SAS 9.1 was used for statistical analysis. Results Through multiple linear regression analysis, c-f PWV is independently and positively associated with age (p = 0.0001) and the homeostasis model assessment of insulin resistance (HOMA-IR; p = 0.0001) and independently negatively associated with LTL (p = 0.0378). HOMA-IR seems to have a stronger influence than SBP on arterial stiffness. In all subjects, age, HOMA-IR, LTL, and SBP predicted 32% of the variance in c-f PWV. LTL was inversely associated with HOMA-IR (p = 0.0001) and age (p = 0.0001). In all subjects, HOMA-IR, age, sex, and SBP predicted 16% of the variance in LTL. Conclusions These data suggest that IR is associated with cell senescence and arterial aging and could, therefore, become the main target in preventing accelerated arterial aging, besides blood pressure control. Research in telomere biology may reveal new ways of estimating cardiovascular aging and risk.Copyright © 2015 Strazhesko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




I., S., O., T., S., B., D., A., E., D., V., V., … Nilsson, P. (2015). Association of Insulin Resistance, Arterial Stiffness and Telomere Length in Adults Free of Cardiovascular Diseases. PloS One, 10(8), e0136676.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free