Pengelompokkan pada dokumen teks pendek masih sulit ini dikarenakan di sparsity kata. Tujuan penelitian ini adalah untuk mengetahui kinerja algoritma k-means++ pada teks pendek dan untuk mengetahui proses pengelompokkan algoritma k-means++ pada tekspendek di abstrak skripsi Jurusan Teknik Elektro Fakultas Teknik UNJ dilaksanakan padasemester genap tahun ajaran 2014-2015. Penelitian ini menggunakan metode penelitianeksperimen. Data abstrak yang digunakan sebanyak 200 abstrak. Penelitian meneliti 4 datayaitu Data pertama adalah abstrak ilmiah di jurusan Teknik Elektro, Universitas NegriJakarta pada paragraf 1 sampai paragraf 3. Data kedua adalah paragraf 1 pada abstrakilmiah di jurusan Teknik Elektro, Universitas Negri Jakarta. Data ketiga adalah paragraf 2pada abstrak ilmiah di jurusan Teknik Elektro, Universitas Negri Jakarta. Data keempatadalah paragraf 3 pada abstrak ilmiah di jurusan Teknik Elektro, Universitas Negri Jakarta.Pengujian kinerja algoritma k-means++ menggunakan matrix confusion. Berdasarkan hasilpenelitian, didapatkan kesimpulan bahwa keakurasian pada abstrak, paragraf 1 di abstrak,paragraf 2 di abstrak, dan paragraf 3 di abstrak mencapai lebih dari 80% . Didapatkan jugakesesuaian antar data yang diprediksi dengan hasil yang benar dari data yangsebenarnya(presisi) pada abstrak, paragraf 1 di abstrak, paragraf 2 di abstrak, dan paragraf3 di abstrak mencapai lebih dari 50% . Didapatkan juga peluang munculnya data relevanyang diambil sesuai dengan query (recall) pada abstrak, paragraf 1 di abstrak, paragraf 2 diabstrak, dan paragraf 3 di abstrak mencapai lebih dari 80%.
CITATION STYLE
Sistiani, C. R., Widodo, & Padhi, B. P. (2018). Kinerja Algoritma Kmeans++ pada Pengelompokkan Dokumen Teks Pendek pada Abstrak di Jurusan Teknik Elektro Fakultas Teknik UNJ. PINTER : Jurnal Pendidikan Teknik Informatika Dan Komputer, 2(1), 39–44. https://doi.org/10.21009/pinter.2.1.6
Mendeley helps you to discover research relevant for your work.