Let-7 family microRNAs have been reported to be downregulated in human hepatocellular carcinoma in comparison with normal hepatic tissues. Among them, let-7g was identified as the lowest expression using real-time RT-PCR. However, the mechanism by which let-7g works in hepatocellular carcinoma remains unknown. Here, in our present study, we have had let-7g reexpressed in vitro in hepatocellular carcinoma cell lines MHCC97-H and HCCLM3 via transfection. The proliferation after reexpression of let-7g was assayed using MTT method; the migration and invasion after restoration were detected by wound-healing and Transwell assay, respectively. We found using Western-blotting that let-7g can regulate epithelial-mesenchymal transition (EMT) by downregulating K-Ras and HMGA2A after reexpresssion. Xenografted nude mice were used to observe whether or not reexpression of let-7g could have potential therapeutic ability. In vivo, to observe the association with let-7g expression and overall prognosis, 40 paired cases of hepatocellular carcinoma were analyzed using in situ hybridization (ISH). It was found that reexpression of let-7g can inhibit the proliferation, migration, and invasion significantly, and that low expression of let-7g was significantly associated with poorer overall survival. Taken together, let-7g could be used as a promising therapeutic agent in vivo in the treatment of hepatocellular carcinoma at the earlier stage. © 2014 Ke-ji Chen et al.
CITATION STYLE
Chen, K. J., Hou, Y., Wang, K., Li, J., Xia, Y., Yang, X. Y., … Shen, F. (2014). Reexpression of let-7g microRNA inhibits the proliferation and migration via K-Ras/HMGA2/snail axis in hepatocellular carcinoma. BioMed Research International, 2014. https://doi.org/10.1155/2014/742417
Mendeley helps you to discover research relevant for your work.