Node self-deployment algorithm based on pigeon swarm optimization for underwater wireless sensor networks

10Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

At present, free-to-move node self-deployment algorithms aim at event coverage and cannot improve network coverage under the premise of considering network connectivity, network reliability and network deployment energy consumption. Thus, this study proposes pigeon-based self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the network coverage in its one-hop region. The one-hop nodes subsequently divide the network into layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement distance of the node to the change in the coverage redundancy ratio as the target function and employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show that PSA improves both network connectivity and network reliability, decreases network deployment energy consumption, and increases network coverage.

Cite

CITATION STYLE

APA

Yu, S., Xu, Y., Jiang, P., Wu, F., & Xu, H. (2017). Node self-deployment algorithm based on pigeon swarm optimization for underwater wireless sensor networks. Sensors (Switzerland), 17(4). https://doi.org/10.3390/s17040674

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free