The implication of epigenetic mechanisms in Alzheimer's disease (AD) has been demonstrated in several studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNA-methylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 (NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species (ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis factor-alpha (Tnf-a) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after UNC0642 treatment. Importantly, a reduction in ß-amyloid plaques was also observed. In conclusion, our work demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective effects in 5XFAD mice, point out G9a/GLP as a new target for AD.
CITATION STYLE
Griñán-Ferré, C., Marsal-García, L., Bellver-Sanchis, A., Kondengaden, S. M., Turga, R. C., Vázquez, S., & Pallàs, M. (2019). Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and ß-Amyloid plaques in an early-onset Alzheimer’s disease mouse model. Aging, 11(23), 11591–11608. https://doi.org/10.18632/aging.102558
Mendeley helps you to discover research relevant for your work.