Despite advances in medical treatments, the proportion of the population suffering from alopecia is increasing, thereby creating a need for new treatments to control hair loss and prevent balding. Human hair follicle dermal papilla cells (hDPCs), a type of specialized fibroblast in the hair bulb, play an essential role in controlling hair growth and in conditions like androgenic alopecia. This study aimed to evaluate the intensity-dependent effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on the expression of anagen-related molecules in hDPCs in vitro. We examined the effect of ELF-EMF on hDPCs to determine whether activation of the GSK-3β/ERK/Akt signaling pathway improved hDPC activation and proliferation; hDPCs were exposed to ELF-EMFs at a frequency of 70 Hz and at intensities ranging from 5 to 100 G, over four days. Various PEMF intensities significantly increased the expression of anagen-related molecules, including collagen IV, laminin, ALP, and versican. In particular, an intensity of 10 G is most potent for promoting the proliferation of hDPC and expression of anagen-related molecules. Moreover, 10 G ELF-EMF significantly increased β-catenin and Wnt3α expression and GSK-3β/ERK/Akt phosphorylation. Our results confirmed that ELF-EMFs enhance hDPC activation and proliferation via the GSK-3β/ERK/Akt signaling pathway, suggesting a potential treatment strategy for alopecia.
CITATION STYLE
Ki, G. E., Kim, Y. M., Lim, H. M., Lee, E. C., Choi, Y. K., & Seo, Y. K. (2020). Extremely low-frequency electromagnetic fields increase the expression of anagen-related molecules in human dermal papilla cells via GSK-3Β/ERK/Akt signaling pathway. International Journal of Molecular Sciences, 21(3). https://doi.org/10.3390/ijms21030784
Mendeley helps you to discover research relevant for your work.