Supramolecular Synthon Promiscuity in Phosphoric Acid-Dihydrogen Phosphate Ionic Cocrystals

13Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Approximately 80% of active pharmaceutical ingredients (APIs) studied as lead candidates in drug development exhibit low aqueous solubility, which typically results in such APIs being poorly absorbed and exhibiting low bioavailability. Salts of ionizable APIs and, more recently, pharmaceutical cocrystals can address low solubility and other relevant physicochemical properties. Pharmaceutical cocrystals are amenable to design through crystal engineering because supramolecular synthons, especially those sustained by hydrogen bonds, can be anticipated through computational modeling or Cambridge Structural Database (CSD) mining. In this contribution, we report a combined experimental and CSD study on a class of cocrystals that, although present in approved drug substances, remains understudied from a crystal engineering perspective: ionic cocrystals composed of dihydrogen phosphate (DHP) salts and phosphoric acid (PA). Ten novel DHP:PA ionic cocrystals were prepared from nine organic bases (4,4′-bipyridine, 5-aminoquinoline, 4,4′-azopyridine, 1,4-diazabicyclo[2.2.2]octane, piperazine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)xylene, 1,2-di(4-pyridyl)-1,2-ethanediol, and isoquinoline-5-carboxylic acid) and one anticonvulsant API, lamotrigine. From the resulting crystal structures and a CSD search of previously reported DHP:PA ionic cocrystals, 46 distinct hydrogen bonding motifs (HBMs) have been identified between DHP anions, PA molecules, and, in some cases, water molecules. Our results indicate that although DHP:PA ionic cocrystals are a challenge from a crystal engineering perspective, they are formed reliably and, given that phosphoric acid is a pharmaceutically acceptable coformer, this makes them relevant to pharmaceutical science.

Cite

CITATION STYLE

APA

Haskins, M. M., Lusi, M., & Zaworotko, M. J. (2022). Supramolecular Synthon Promiscuity in Phosphoric Acid-Dihydrogen Phosphate Ionic Cocrystals. Crystal Growth and Design, 22(5), 3333–3342. https://doi.org/10.1021/acs.cgd.2c00150

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free